Borel Kernels and their Approximation, Categorically
نویسندگان
چکیده
Ilias Garnier Ecole Normale Supérieure Paris [email protected] Alexandra Silva University College London [email protected] Abstract This paper introduces a categorical framework to study the exact and approximate semantics of probabilistic programs. We construct a dagger symmetric monoidal category of Borel kernels where the dagger-structure is given by Bayesian inversion. We show functorial bridges between this category and categories of Banach lattices which formalize the move from kernel-based semantics to predicate transformer (backward) or state transformer (forward) semantics. These bridges are related by natural transformations, and we show in particular that the Radon-Nikodym and Riesz representation theorems two pillars of probability theory define natural transformations. With the mathematical infrastructure in place, we present a generic and endogenous approach to approximating kernels on standard Borel spaces which exploits the involutive structure of our category of kernels. The approximation can be formulated in several equivalent ways by using the functorial bridges and natural transformations described above. Finally, we show that for sensible discretization schemes, every Borel kernel can be approximated by kernels on finite spaces, and that these approximations converge for a natural choice of topology. We illustrate the theory by showing two examples of how approximation can effectively be used in practice: Bayesian inference and the Kleene ∗ operation of ProbNetKAT.
منابع مشابه
Five-value rich lines, Borel directions and uniqueness of meromorphic functions
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...
متن کاملApplications of universality limits to zeros and reproducing kernels of orthogonal polynomials
We apply universality limits to asymptotics of spacing of zeros fxkng of orthogonal polynomials, for weights with compact support and for exponential weights. A typical result is lim n!1 xkn xk+1;n ~ Kn (xkn; xkn) = 1 under minimal hypotheses on the weight, with ~ Kn denoting a normalized reproducing kernel. Moreover, for exponential weights, we derive asymptotics for the di¤erentiated kernels ...
متن کاملCategorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملTopological Expansion and Exponential Asymptotics in 1D Quantum Mechanics
Borel summable semiclassical expansions in 1D quantum mechanics are considered. These are the Borel summable expansions of fundamental solutions and of quantities constructed with their help. An expansion, called topological, is constructed for the corresponding Borel functions. Its main property is to order the singularity structure of the Borel plane in a hierarchical way by an increasing com...
متن کاملGeneralizations of Borel-Cantelli Lemma
The Borel-Cantelli Lemma is very important in the probability theory. In this paper, we first describe the general case of the Borel-Cantelli Lemma. The first part of this lemma, assuming convergence and the second part includes divergence and independence assumptions. In the following, we have brought generalizations of the first and second part of this lemma. In most generalizat...
متن کامل